On the Hamilton-Jacobi equation for second class constrained systems
نویسنده
چکیده
We discuss a general procedure for arriving at the Hamilton-Jacobi equation of second-class constrained systems, and illustrate it in terms of a number of examples by explicitely obtaining the respective Hamilton principal function, and verifying that it leads to the correct solution to the Euler-Lagrange equations. email: [email protected] email: [email protected]
منابع مشابه
A New Near Optimal High Gain Controller For The Non-Minimum Phase Affine Nonlinear Systems
In this paper, a new analytical method to find a near-optimal high gain controller for the non-minimum phase affine nonlinear systems is introduced. This controller is derived based on the closed form solution of the Hamilton-Jacobi-Bellman (HJB) equation associated with the cheap control problem. This methodology employs an algebraic equation with parametric coefficients for the systems with s...
متن کاملOptimal Trajectories of Curvature Constrained Motion in the Hamilton-Jacobi Formulation
We propose a Hamilton-Jacobi equation approach for computing time-optimal trajectories of a vehicle which travels under certain curvature constraints. We derive a class of Hamilton-Jacobi equations which models such motions; it unifies two well-known vehicular models, the Dubins’ and Reeds-Shepp’s cars, and gives further generalizations. We show that the value function of the control problem so...
متن کاملOptimal portfolio selection with consumption and nonlinear integro-differential equations with gradient constraint: A viscosity solution approach
We study a problem of optimal consumption and portfolio selection in a market where the logreturns of the uncertain assets are not necessarily normally distributed. The natural models then involve pure-jump L evy processes as driving noise instead of Brownian motion like in the Black and Scholes model. The state constrained optimization problem involves the notion of local substitution and is o...
متن کاملNon-Involutive Constrained Systems and Hamilton-Jacobi Formalism
In this work we discuss the natural appearance of the Generalized Brackets in systems with non-involutive (equivalent to second class) constraints in the Hamilton-Jacobi formalism. We show how a consistent geometric interpretation of the integrability conditions leads to the reduction of degrees of freedom of these systems and, as consequence, naturally defines a dynamics in a reduced phase space.
متن کاملOptimal Control for Descriptor Systems: Tracking Problem (RESEARCH NOTE)
Singular systems have been studied extensively during the last two decades due Abstract to their many practical applications. Such systems possess numerous properties not shared by the well-known state variable systems. This paper considers the linear tracking problem for the continuous-time singular systems. The Hamilton-Jacobi theory is used in order to compute the optimal control and associa...
متن کامل